Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(18): 4799-4805, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38666898

RESUMO

We investigate the role of the black-phosphorus-based n-p (BP-np) junction modulated by linearly polarized light (LPL) in governing the quantum transport behaviors. Following the analysis of the band structures, we find that the LPL can adjust the gap between the conduction and valence bands by reducing the impact of momentum mismatch caused by the band gap. In addition, LPL can also eliminate the angle dependence of transmission. This means that for BP with a fixed band gap, the transmission-forbidden region can be reduced and the transmission probability can be increased by applying LPL modulation of the band gap to achieve all-angle perfect transmission, i.e., super-Klein tunneling (SKT). Our investigation also found that the SKT is robust to different incident energies, resulting in a larger conductance platform. These findings could be useful for the development and application of optical-like electronic devices.

2.
Phys Chem Chem Phys ; 25(35): 23836-23846, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37641860

RESUMO

We investigate the role of heterojunctions of few-layer black phosphorus (BP) with band gap inversion in governing the quantum transport behaviors. Numerical results show that in the armchair junction, electron tunneling probability occurs under approximately normal incidence with its magnitude T > 0.5. More interestingly, when different band gaps are taken into account on two sides of this junction, the maximum transmission appears away from the center of the valley, leading to the occurrence of anomalous Klein tunneling. Such a result tends to be independent of the width and height of the potential barrier. On the other hand, in the zigzag junction, electron transmission arises in a larger range of angles, and perfect electron transmission (T = 1.0) or reflection appears under specific band gap configurations. These findings provide a new understanding for the study of Klein tunneling and anomalous Klein tunneling based on tunable band gap BP or other two-dimensional Dirac semimetals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA